Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.564
Filtrar
2.
An Acad Bras Cienc ; 95(suppl 2): e20220165, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38126430

RESUMO

Corticioid and poroid fungi are widely known for wood decomposition which confers an important ecological role and biotechnological properties upon these species. Although being one of the most studied groups of fungi worldwide, data on diversity and geographic occurrence patterns in Brazil are insufficient, especially in poorly studied areas, including the Cerrado biome. Here we present an overview of the scientific literature concerning the corticioid and poroid fungi from Cerrado, along with a list of species found in the biome so far. The historic research at Cerrado comprised 47 articles published between 1876 and 2021, of which 55% were published in the last decade. We found 387 records and 223 species, while 94 species are new additions to the checklists published in the last decade. Six of the listed species are endemic to Cerrado. Furthermore, 29 species are only known from Cerrado in Brazil, although they occur in other regions of the world. The main research groups focused on these fungi in Brazil have already published at least one article with samples from Cerrado. Therefore, intensifying studies throughout Cerrado could help in a better understanding of its Funga, its evolutionary relationship, and its threatens status.


Assuntos
Lista de Checagem , Fungos , Evolução Biológica , Brasil , Ecossistema , Fungos/classificação
3.
BMC Microbiol ; 23(1): 227, 2023 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598156

RESUMO

Extracellular vesicles (EVs) are a heterogeneous group of lipid membrane-enclosed compartments that contain different biomolecules and are released by almost all living cells, including fungal genera. Fungal EVs contain multiple bioactive components that perform various biological functions, such as stimulation of the host immune system, transport of virulence factors, induction of biofilm formation, and mediation of host-pathogen interactions. In this review, we summarize the current knowledge on EVs of human pathogenic fungi, mainly focusing on their biogenesis, composition, and biological effects. We also discuss the potential markers and therapeutic applications of fungal EVs.


Assuntos
Vesículas Extracelulares , Fungos , Fungos/química , Fungos/classificação , Fungos/citologia , Fungos/patogenicidade , Vesículas Extracelulares/química , Micoses/microbiologia , Humanos , Animais , Biofilmes , Vacinas Fúngicas/imunologia , Imunoterapia , Biomarcadores
4.
Future Microbiol ; 18: 673-679, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37522244

RESUMO

Cruciferous vegetables and mustard oil are rich in the glucosinolate group of molecules. Isothiocyanates are an important group of glucosinolate derivatives. These derivatives have various bioactive properties, including antioxidant, antibacterial, anticarcinogenic, antifungal, antiparasitic, herbicidal and antimutagenic activity. Previous studies indicate that regular intake of such vegetables may considerably reduce the incidence of various types of cancer. These studies have inspired studies where the bioactive agents of these plants have been isolated and explored for their therapeutic applications. The use of these bioactive compounds as antifungals could be a new therapeutic approach against human pathogenic fungi. Isothiocyanates have been studied for their antifungal activity and have the potential to be used for antifungal therapy.


Vegetables like cabbage, cauliflower and broccoli have a distinct flavor because of chemicals called glucosinolates. Whenever we cut and eat these vegetables, glucosinolates are broken down into isothiocyanates. Glucosinolates and isothiocyanates have health benefits because they stop the growth of bacteria, parasites and fungi that cause disease, such as Candida albicans. They may also prevent cancer, as regularly eating these vegetables has been shown to reduce the development of some types of cancer in humans. Investigation is needed to explore how glucosinolates and isothiocyanates could be used to treat fungal infections.


Assuntos
Antifúngicos , Fungos , Isotiocianatos , Isotiocianatos/química , Isotiocianatos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Brassicaceae/química , Fungos/classificação , Fungos/efeitos dos fármacos , Fungos/metabolismo , Humanos , Micoses/dietoterapia , Micoses/tratamento farmacológico , Micoses/microbiologia , Verduras/química
5.
Mycologia ; 115(4): 571-577, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37196170

RESUMO

Metabarcoding studies of fungal communities rely on curated databases for assigning taxonomy. Any host or other nonfungal environmental sequences that are amplified during polymerase chain reaction (PCR) are inherently assigned taxonomy by these same databases, possibly leading to ambiguous nonfungal amplicons being assigned to fungal taxa. Here, we investigated the effects of including nonfungal outgroups in a fungal taxonomic database to aid in detecting and removing these nontarget amplicons. We processed 15 publicly available fungal metabarcode data sets and discovered that roughly 40% of the reads from these studies were not fungal, although they were assigned as Fungus sp. when using a database without nonfungal outgroups. We discuss implications for metabarcoding studies and recommend assigning taxonomy using a database with outgroups to better detect these nonfungal amplicons.


Assuntos
Código de Barras de DNA Taxonômico , Fungos , Fungos/classificação
6.
Methods Mol Biol ; 2659: 95-101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37249888

RESUMO

Phytopathogenic fungi are a diverse and widespread group that has a significant detrimental impact on crops with an estimated annual average loss of 15% worldwide. Understanding the interaction between host plants and pathogenic fungi is critical to delineate underlying mechanisms of plant defense to mitigate agricultural losses. Fungal pathogens utilize suites of secreted molecules, called effectors, to modulate plant metabolism and immune response to overcome host defenses and promote colonization. Effectors come in many flavors including proteinaceous products, small RNAs, and metabolites such as mycotoxins. This review will focus on methods for identifying protein effectors from fungi. Excellent reviews have been published to identify secondary metabolites and small RNAs from fungi and therefore will not be part of this review.


Assuntos
Proteínas Fúngicas , Fungos , Doenças das Plantas , Secretoma , Doenças das Plantas/microbiologia , Fungos/química , Fungos/classificação , Fungos/metabolismo , Biologia Computacional/métodos , Proteínas Fúngicas/análise , Aprendizado de Máquina , Interações entre Hospedeiro e Microrganismos
7.
Environ Microbiol ; 25(9): 1696-1712, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37105180

RESUMO

Denitrifying woodchip bioreactors (WBRs) are increasingly used to manage the release of non-point source nitrogen (N) by stimulating microbial denitrification. Woodchips serve as a renewable organic carbon (C) source, yet the recalcitrance of organic C in lignocellulosic biomass causes many WBRs to be C-limited. Prior studies have observed that oxic-anoxic cycling increased the mobilization of organic C, increased nitrate (NO3 - ) removal rates, and attenuated production of nitrous oxide (N2 O). Here, we use multi-omics approaches and amplicon sequencing of fungal 5.8S-ITS2 and prokaryotic 16S rRNA genes to elucidate the microbial drivers for enhanced NO3 - removal and attenuated N2 O production under redox-dynamic conditions. Transient oxic periods stimulated the expression of fungal ligninolytic enzymes, increasing the bioavailability of woodchip-derived C and stimulating the expression of denitrification genes. Nitrous oxide reductase (nosZ) genes were primarily clade II, and the ratio of clade II/clade I nosZ transcripts during the oxic-anoxic transition was strongly correlated with the N2 O yield. Analysis of metagenome-assembled genomes revealed that many of the denitrifying microorganisms also have a genotypic ability to degrade complex polysaccharides like cellulose and hemicellulose, highlighting the adaptation of the WBR microbiome to the ecophysiological niche of the woodchip matrix.


Assuntos
Bactérias , Fungos , Madeira , Reatores Biológicos , Madeira/microbiologia , Carbono , Desnitrificação , Oxirredução , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação
8.
FEMS Microbiol Ecol ; 99(4)2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36931894

RESUMO

This study aimed to determine the impact of different agroecological practices on the composition and diversity of edaphic bacterial and fungal communities. We designed two experimental agroecological vegetable cropping systems and analyzed their effects on soil microbial communities by pyrosequencing the 16S and 18S ribosomal RNA genes. Our results highlighted modifications to the Operational Taxonomic Units in both experimental systems compared with bare soil, particularly for the phyla Actinobacteria, Ascomycota, Bacteroidetes, and Mucoromycota. Multidimensional scaling plots based on beta diversity showed a clear distinction between the two experimental systems for fungi, whereas differences were observed between bare soil and the two experimental systems for bacteria. Overall, the agroecological systems enhanced soil microbial diversity. We showed a distinction between the two experimental systems and bare soil, correlated with the high total N and total P contents in the agroecological systems. Both experimental systems promoted soil enrichment with certain essential minerals. The agroecological systems had a positive impact on soil microbial communities, particularly by promoting the development of beneficial soil bacteria like Actinobacteria. In the two experimental systems, changes in the quality and quantity of organic matter (i.e. mulch, vermicompost, plant diversity) could have modified the abundance and diversity of microbial communities.


Assuntos
Agricultura , Microbiota , Microbiologia do Solo , Verduras , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Microbiota/genética , RNA Ribossômico 16S/genética , Solo/química , Verduras/crescimento & desenvolvimento , Verduras/microbiologia , Agricultura/métodos , Biodiversidade , Fungos/classificação , Fungos/genética , Fungos/metabolismo
9.
J Clin Microbiol ; 61(6): e0033022, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-36975779

RESUMO

The current article summarizes recent changes in nomenclature for fungi of medical importance published in the years 2020 to 2021, including new species and revised names for existing ones. Many of the revised names have been widely adopted without further discussion. However, those that concern common pathogens of humans may take longer to achieve general usage, with new and current names reported together to engender increasing familiarity with the correct taxonomic classification.


Assuntos
Fungos , Fungos/classificação
10.
Med Mycol ; 61(3)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36906282

RESUMO

Since COVID-19 spread worldwide, invasive fungal rhinosinusitis (IFRS) has emerged in immunocompromised patients as a new clinical challenge. In this study, clinical specimens of 89 COVID-19 patients who presented clinical and radiological evidence suggestive of IFRS were examined by direct microscopy, histopathology, and culture, and the isolated colonies were identified through DNA sequence analysis. Fungal elements were microscopically observed in 84.27% of the patients. Males (53.9%) and patients over 40 (95.5%) were more commonly affected than others. Headache (94.4%) and retro-orbital pain (87.6%) were the most common symptoms, followed by ptosis/proptosis/eyelid swelling (52.8%), and 74 patients underwent surgery and debridement. The most common predisposing factors were steroid therapy (n = 83, 93.3%), diabetes mellitus (n = 63, 70.8%), and hypertension (n = 42, 47.2%). The culture was positive for 60.67% of the confirmed cases, and Mucorales were the most prevalent (48.14%) causative fungal agents. Different species of Aspergillus (29.63%) and Fusarium (3.7%) and a mix of two filamentous fungi (16.67%) were other causative agents. For 21 patients, no growth was seen in culture despite a positive result on microscopic examinations. In PCR-sequencing of 53 isolates, divergent fungal taxons, including 8 genera and 17 species, were identified as followed: Rhizopus oryzae (n = 22), Aspergillus flavus (n = 10), A. fumigatus (n = 4), A. niger (n = 3), R. microsporus (n = 2), Mucor circinelloides, Lichtheimia ramosa, Apophysomyces variabilis, A. tubingensis, A. alliaceus, A. nidulans, A. calidoustus, Fusarium fujikuroi/proliferatum, F. oxysporum, F. solani, Lomentospora prolificans, and Candida albicans (each n = 1). In conclusion, a diverse set of species involved in COVID-19-associated IFRS was observed in this study. Our data encourage specialist physicians to consider the possibility of involving various species in IFRS in immunocompromised and COVID-19 patients. In light of utilizing molecular identification approaches, the current knowledge of microbial epidemiology of invasive fungal infections, especially IFRS, may change dramatically.


Invasive fungal rhinosinusitis (IFRS) may infect people with diabetes, cancer, or COVID-19. In this study, various types of fungi were identified from COVID-19-associated-IFRS, encouraging physicians to consider specific treatments.


Assuntos
COVID-19 , Fungos , Infecções Fúngicas Invasivas , Sinusite , COVID-19/complicações , COVID-19/microbiologia , Sinusite/complicações , Sinusite/epidemiologia , Sinusite/microbiologia , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Infecções Fúngicas Invasivas/epidemiologia , Infecções Fúngicas Invasivas/microbiologia , Infecções Fúngicas Invasivas/patologia , Infecções Fúngicas Invasivas/cirurgia , Fatores de Risco , Reação em Cadeia da Polimerase , DNA Fúngico/genética , Irã (Geográfico)/epidemiologia , Humanos , Masculino , Feminino , Biodiversidade
11.
Microb Ecol ; 86(1): 213-223, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35821127

RESUMO

Open-cast mining leads to the loss of naturally developed soils and their ecosystem functions and services. Soil restoration after mining aims to restore the agricultural productivity in which the functions of the fungal community play a crucial role. Whether fungi reach a comparable functional state as in the soil before mining within half a century of recultivation is still unanswered. Here, we characterised the soil fungal community using ITS amplicon Illumina sequencing across a 52-year chronosequence of agricultural recultivation after open-cast mining in northern Europe. Both taxonomic and functional community composition showed profound shifts over time, which could be attributed to the changes in nutrient status, especially phosphorus availability. However, taxonomic composition did not reach the pre-mining state, whereas functional composition did. Importantly, we identified a positive development of arbuscular mycorrhizal root fungal symbionts after the initial three years of alfalfa cultivation, followed by a decline after conversion to conventional farming, with arbuscular mycorrhizal fungi being replaced by soil saprobes. We conclude that appropriate agricultural management can steer the fungal community to its functional pre-mining state despite stochasticity in the reestablishment of soil fungal communities. Nonetheless, conventional agricultural management results in the loss of plant symbionts, favouring non-symbiotic fungi.


Assuntos
Ecossistema , Recuperação e Remediação Ambiental , Fungos , Microbiologia do Solo , Agricultura , Fungos/classificação , Fungos/genética , Fungos/metabolismo , Plantas/microbiologia , Solo/química , Íntrons/genética , Mineração , Biodiversidade
12.
Nucleic Acids Res ; 51(D1): D777-D784, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36271795

RESUMO

In phylogenomics the evolutionary relationship of organisms is studied by their genomic information. A common approach to phylogenomics is to extract related genes from each organism, build a multiple sequence alignment and then reconstruct evolution relations through a phylogenetic tree. Often a set of highly conserved genes occurring in single-copy, called core genes, are used for this analysis, as they allow efficient automation within a taxonomic clade. Here we introduce the Universal Fungal Core Genes (UFCG) database and pipeline for genome-wide phylogenetic analysis of fungi. The UFCG database consists of 61 curated fungal marker genes, including a novel set of 41 computationally derived core genes and 20 canonical genes derived from literature, as well as marker gene sequences extracted from publicly available fungal genomes. Furthermore, we provide an easy-to-use, fully automated and open-source pipeline for marker gene extraction, training and phylogenetic tree reconstruction. The UFCG pipeline can identify marker genes from genomic, proteomic and transcriptomic data, while producing phylogenies consistent with those previously reported, and is publicly available together with the UFCG database at https://ufcg.steineggerlab.com.


Assuntos
Bases de Dados Genéticas , Fungos , Fungos/classificação , Fungos/genética , Genes Fúngicos , Genoma Fúngico , Filogenia , Proteômica
13.
Nucleic Acids Res ; 51(D1): D708-D716, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36271801

RESUMO

Fungal taxonomy is a complex and rapidly changing subject, which makes proper naming of fungi challenging for taxonomists. A registration platform with a standardized and information-integrated database is a powerful tool for efficient research on fungal taxonomy. Fungal Names (FN, https://nmdc.cn/fungalnames/; launched in 2011) is one of the three official fungal nomenclatural repositories authorized by the International Nomenclature Committee for Fungi (NCF). Currently, FN includes >567 000 taxon names from >10 000 related journals and books published since 1596 and covers >147 000 collection records of type specimens/illustrations from >5000 preserving agencies. FN is also a knowledge base that integrates nomenclature information with specimens, culture collections and herbaria/fungaria, publications and taxonomists, and represents a summary of the history and recent advances in fungal taxonomy. Published fungal names are categorized based on well-accepted nomenclature rules and can be readily searched with different keywords and strategies. In combination with a standardized name checking tool and a sequence alignment-based identification package, FN makes the registration and typification of nomenclatural novelties of fungi convenient and accurate.


Assuntos
Fungos , Bases de Conhecimento , Gerenciamento de Dados , Bases de Dados Factuais , Alinhamento de Sequência , Fungos/classificação , Terminologia como Assunto
14.
Przegl Epidemiol ; 77(3): 279-290, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38328907

RESUMO

Aim of the study: The purpose of the study was the microbiological analysis of bloodstream infections in patients hospitalized at the National Institute of Oncology, Maria Sklodowska-Curie - National Research Institute in the period from 01/01/2020 to 31/10/2022. Material and methods: In the period from 01/01/2020 to 31/10/2022, 18,420 blood cultures obtained from patients hospitalized at the NIO-PIB were analysed in the Department of Clinical Microbiology (total for the presence of bacteria and fungi). Culture for the presence of bacteria was carried out in the BactAlert automatic system by bioMerieux, and for fungi in the Bactec FX automatic system by Becton Dickinson. Results: 1,184 strains of bacteria and 32 strains of fungi considered to be the etiological factor of the infection were cultured from clinical samples. Gram-positive bacteria accounted for 61.57%, while Gram-negative bacteria accounted for 32.26% of all isolated bacterial strains. The most frequently cultured strains were Escherichia coli - 13.77% (including 22.1% of ESBL strains), Klebsiella penumoniae - 4.6% (44.4% of ESBL strains, 1.85% of NDM strains), Enterobacter cloacae - 2 .7% (including 40.6% of multi-resistant strains: ESBL (15.6%) or with AmpC derepression (25%), among the non-fermenting bacilli, Pseudomonas aeruginosa was the most frequently cultured - 4.18% (including 3.8% MBL) and Acinetobacter baumannii - 0.8% (including CRAB strains 50%, MBL 10%). Anaerobic microorganisms were responsible for 3.46% of blood infection cases. Yeast- like fungi were a factor in 2.7% of all fungemia cases. From blood samples taken Staphylococci were more frequently isolated directly from a vein or through a central venous catheter than aerobic Gram-negative bacilli (44.7% and 25.3% and 55.6% and 12.5%, respectively). The opposite situation occurred in the case of samples taken simultaneously directly from vein and through a central venous catheter, in which a higher share of aerobic Gram-negative bacilli (46.6%) than staphylococci (32.8%) in causing blood infections was observed. Conclusions: Gram-positive bacteria are the major contributors to bloodstream infections in cancer patients. There is a growing tendency to develop BSI caused by multi-resistant strains.


Assuntos
Bacteriemia , Bactérias , Fungemia , Neoplasias , Humanos , Antibacterianos/uso terapêutico , Bacteriemia/tratamento farmacológico , Bacteriemia/epidemiologia , Bacteriemia/microbiologia , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Testes de Sensibilidade Microbiana , Polônia/epidemiologia , Sepse/epidemiologia , Sepse/tratamento farmacológico , Neoplasias/complicações , Fungos/classificação , Fungos/isolamento & purificação , Fungemia/epidemiologia , Fungemia/microbiologia
15.
Proc Natl Acad Sci U S A ; 119(36): e2116841119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037379

RESUMO

Most of the described species in kingdom Fungi are contained in two phyla, the Ascomycota and the Basidiomycota (subkingdom Dikarya). As a result, our understanding of the biology of the kingdom is heavily influenced by traits observed in Dikarya, such as aerial spore dispersal and life cycles dominated by mitosis of haploid nuclei. We now appreciate that Fungi comprises numerous phylum-level lineages in addition to those of Dikarya, but the phylogeny and genetic characteristics of most of these lineages are poorly understood due to limited genome sampling. Here, we addressed major evolutionary trends in the non-Dikarya fungi by phylogenomic analysis of 69 newly generated draft genome sequences of the zoosporic (flagellated) lineages of true fungi. Our phylogeny indicated five lineages of zoosporic fungi and placed Blastocladiomycota, which has an alternation of haploid and diploid generations, as branching closer to the Dikarya than to the Chytridiomyceta. Our estimates of heterozygosity based on genome sequence data indicate that the zoosporic lineages plus the Zoopagomycota are frequently characterized by diploid-dominant life cycles. We mapped additional traits, such as ancestral cell-cycle regulators, cell-membrane- and cell-wall-associated genes, and the use of the amino acid selenocysteine on the phylogeny and found that these ancestral traits that are shared with Metazoa have been subject to extensive parallel loss across zoosporic lineages. Together, our results indicate a gradual transition in the genetics and cell biology of fungi from their ancestor and caution against assuming that traits measured in Dikarya are typical of other fungal lineages.


Assuntos
Fungos , Estágios do Ciclo de Vida , Filogenia , Diploide , Fungos/classificação , Fungos/genética , Genoma Fúngico/genética
16.
Sci Rep ; 12(1): 13063, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906471

RESUMO

Spodoptera frugiperda is a highly polyphagous pest worldwide with a wide host range that causes serious losses to many economically important crops. Recently, insect-microbe associations have become a hot spot in current entomology research, and the midgut microbiome of S. frugiperda has been investigated, while the effects of cruciferous vegetables remain unknown. In this study, the growth of S. frugiperda larvae fed on an artificial diet, Brassica campestris and Brassica oleracea for 7 days was analyzed. Besides, the microbial community and functional prediction analyses of the larval midguts of S. frugiperda fed with different diets were performed by high-throughput sequencing. Our results showed that B. oleracea inhibited the growth of S. frugiperda larvae. The larval midgut microbial community composition and structure were significantly affected by different diets. Linear discriminant analysis effect size (LEfSe) suggested 20 bacterial genera and 2 fungal genera contributed to different gut microbial community structures. The functional classification of the midgut microbiome analyzed by PICRUSt and FUNGuild showed that the most COG function categories of midgut bacterial function were changed by B. oleracea, while the guilds of fungal function were altered by B. campestris significantly. These results showed that the diversity and structure of the S. frugiperda midgut microbial community were affected by cruciferous vegetable feeding. Our study provided a preliminary understanding of the role of midgut microbes in S. frugiperda larvae in response to cruciferous vegetables.


Assuntos
Bactérias/classificação , Brassica , Fungos/classificação , Microbiota , Spodoptera/microbiologia , Verduras , Animais , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Fungos/genética , Fungos/crescimento & desenvolvimento , Larva/fisiologia , Micobioma
17.
Biosensors (Basel) ; 12(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35735526

RESUMO

The demand for rapid and accurate identification of microorganisms is growing due to considerable importance in all areas related to public health and safety. Here, we demonstrate a rapid and label-free strategy for the identification of microorganisms by integrating terahertz-attenuated total reflection (THz-ATR) spectroscopy with an automated recognition method based on multi-classifier voting. Our results show that 13 standard microbial strains can be classified into three different groups of microorganisms (Gram-positive bacteria, Gram-negative bacteria, and fungi) by THz-ATR spectroscopy. To detect clinical microbial strains with better differentiation that accounts for their greater sample heterogeneity, an automated recognition algorithm is proposed based on multi-classifier voting. It uses three types of machine learning classifiers to identify five different groups of clinical microbial strains. The results demonstrate that common microorganisms, once time-consuming to distinguish by traditional microbial identification methods, can be rapidly and accurately recognized using THz-ATR spectra in minutes. The proposed automatic recognition method is optimized by a spectroscopic feature selection algorithm designed to identify the optimal diagnostic indicator, and the combination of different machine learning classifiers with a voting scheme. The total diagnostic accuracy reaches 80.77% (as high as 99.6% for Enterococcus faecalis) for 1123 isolates from clinical samples of sputum, blood, urine, and feces. This strategy demonstrates that THz spectroscopy integrated with an automatic recognition method based on multi-classifier voting significantly improves the accuracy of spectral analysis, thereby presenting a new method for true label-free identification of clinical microorganisms with high efficiency.


Assuntos
Algoritmos , Bactérias/classificação , Fungos/classificação , Interações entre Hospedeiro e Microrganismos , Espectroscopia Terahertz , Aprendizado de Máquina , Saúde Pública , Segurança , Análise Espectral , Espectroscopia Terahertz/métodos , Vírus/classificação
18.
Sci Rep ; 12(1): 11013, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773465

RESUMO

Plants harbor in their external surfaces and internal tissues a highly diverse and finely structured microbial assembly, the microbiota. Each plant compartment usually represents a unique ecological niche hosting a distinct microbial community and niche differentiation, which may mirror distinct functions of a specialized microbiota, has been mainly investigated for bacteria. Far less is known for the fungal components of the plant-associated microbiota. Here, we applied a metabarcoding approach to describe the fungal assemblages in different organs of Vaccinium myrtillus plants (Ericaceae) collected in a subalpine meadow in North-West Italy, and identified specific taxa enriched in internal tissues of roots, stems, leaves and flowers. We also traced the distribution of some important fungi commonly associated with plants of the family Ericaceae, namely the ericoid mycorrhizal (ErM) fungi and the dark septate endophytes (DSE), both playing important roles in plant growth and health. Operational taxonomic units attributed to established ErM fungal species in the genus Hyaloscypha and to DSE species in the Phialocephala-Acephala applanata complex (PAC) were found in all the plant organs. Mycorrhizal fungi are thought to be strictly associated with the plant roots, and this first observation of ErM fungi in the above-ground organs of the host plant may be explained by the evolutionary closeness of ErM fungi in the genus Hyaloscypha with non mycorrhizal fungal endophytes. This is also witnessed by the closer similarities of the ErM fungal genomes with the genomes of plant endophytes than with those of other mycorrhizal fungi, such as arbuscular or ectomycorrhizal fungi.


Assuntos
Ericaceae , Fungos/classificação , Micorrizas , Vaccinium myrtillus/microbiologia , Código de Barras de DNA Taxonômico , Endófitos/genética , Fungos/genética , Fungos/crescimento & desenvolvimento , Itália , Micobioma , Micorrizas/genética , Raízes de Plantas/microbiologia
19.
Biocontrol Sci ; 27(2): 99-105, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35753798

RESUMO

The aims of this study were to determine the impact of storage practice and mold types on mold growth and aflatoxin B1 (AFB1) concentration in corn residue from local seed corn plants, the main roughage source of dairy farms in the northern region in Thailand. A total of 223 samples from 2 types of corn residue - dried and wet - were collected. Mold contamination was determined by spread plate technique, and aflatoxin B1 (AFB1) quantification was performed by a commercial enzyme-linked immunosorbent assay. Multivariate linear models were created to determine factors associated with fungal quantity and AFB1 concentration. Results showed that the presence of Cladosporium spp. in the samples was associated with a lower risk of AFB1 contamination (P<0.05). In addition, appropriate storage practices, e.g. keeping feeds under a roof and using floor canvas under feed piles, gave lower risk of mold contamination and decreasing AFB1 contamination.


Assuntos
Aflatoxina B1 , Ração Animal , Contaminação de Alimentos , Fungos , Zea mays , Aflatoxina B1/análise , Ração Animal/análise , Fazendas , Contaminação de Alimentos/análise , Fungos/classificação , Fungos/isolamento & purificação , Tailândia , Zea mays/química
20.
Food Res Int ; 156: 111165, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35651031

RESUMO

Rainfall particularly under continental climates with monsoonal tendency impacts the vineyard microbial niches during grapevine growth. With microbial community shifts, vine traits (grape flavor and yield) cultivated/protected under rain-shelter may ultimately be altered. Such cultivation may influence microflora dynamics via meteorological parameter variations, however this is unclear yet. Here, we used Cabernet Sauvignon, a prevalent red cultivar among wine growing regions, to evaluate the effects of the rain-shelter cultivation on the microorganism diversity. We found that average air temperature under rain-shelter conditions was 2-3 °C higher than the non-covered group, while air humidity the maximum reduction was 5.79% (p < 0.05). After grape setting stage, similar trends were observed on soil temperature (increased) and humidity (lowered) under the treatments (p < 0.05). UV and precipitation of rain-shelter treatment were less by a total of 72% and 96%, respectively (p < 0.05). The rain-shelter management presented lower fungal and bacterial OTUs. The fungal alpha diversity on leaves and branches under rain-shelter was lower (p < 0.05) than the control as the grape ripeness, with Ascomycota, Mycosphaerella and Cladosporium as the principal fungi. Our results revealed that the fungal microbiota patterns were differentiated by the cultivations from setting stage to the entire véraison and then tended to be similar at harvesting. Only branch fungal patterns were observed asymmetrically at all stages. Meanwhile, bacterial diversity and distribution varied on colonization locations where Proteobacteria and Actinobacteria were the primary bacteria phyla. Bacterial community structures overlapped at harvest, while the differences were observed between two cultivations at other stages, excluding grape berry. The rain-shelter cultivation reduced the abundance of Alternaria and Colletotrichum that may adversely affect grapevine health. Multivariate statistical analysis suggested that the effect of vineyard microclimate on microbiota distribution and succession were influenced by cultivation modes and grapevine developmental stages. This research provides evidence to address the dynamics of microbial ecology from vineyard to grape under rain-shelter cultivation, and its benefits as a sustainable vineyard management.


Assuntos
Microbiota , Chuva , Vitis , Vinho , Bactérias/classificação , China , Frutas/química , Frutas/microbiologia , Fungos/classificação , Vitis/química , Vitis/microbiologia , Vinho/análise , Vinho/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...